ESOT Congress 2025: Scientists create functional human islets in 3D printing breakthrough for type 1 diabetes treatment

European Society for Organ Transplantation (ESOT) Congress 2025

LONDON, June 29, 2025 /PRNewswire/ -- A team of international scientists has made a major leap forward in diabetes research by successfully 3D printing functional human islets using a novel bioink. Presented today at the ESOT Congress 2025, the new technology could pave the way for more effective and less invasive treatment for people living with type 1 diabetes.

 

The breakthrough involved printing human islets – the insulin-producing clusters of cells in the pancreas – using a customised bioink made from alginate and decellularised human pancreatic tissue. This approach produced durable, high-density islet structures that remained alive and functional for up to three weeks, maintaining strong insulin responses to glucose and showing real potential for future clinical use.

 

Traditional islet transplants are typically infused into the liver, a process that can result in significant loss of cells and limited long-term success. In contrast, the 3D-printed islets were designed to be implanted just under the skin, a simple procedure requiring only local anaesthesia and a small incision. This minimally invasive approach could offer a safer and more comfortable option for patients.

 

"Our goal was to recreate the natural environment of the pancreas so that transplanted cells would survive and function better," explained lead author Dr. Quentin Perrier. "We used a special bioink that mimics the support structure of the pancreas, giving islets the oxygen and nutrients they need to thrive."

 

The bioprinted islets stayed alive and healthy, with over 90% cell survival. They responded better to glucose than standard islet preparations, releasing more insulin when it was needed. By day 21, the islets showed a stronger ability to sense and react to blood sugar levels – an important sign that they could work well after being implanted. The constructs maintained their structure without clumping or breaking down, overcoming a common hurdle in earlier approaches.

 

Additionally, the 3D-printed structures featured a porous architecture that enhanced the flow of oxygen and nutrients to the embedded islets. This design helped maintain cell health and promoted vascularisation, both of which are critical for long-term survival and function after transplantation.

 

"This is one of the first studies to use real human islets instead of animal cells in bioprinting, and the results are incredibly promising," noted Dr. Perrier. "We're getting closer to creating an off-the-shelf treatment for diabetes that could one day eliminate the need for insulin injections."

 

PR Newswire Asia Ltd.

 

 

PR Newswire
1954年に設立された世界初の米国広報通信社です。配信ネットワークで全世界をカバーしています。Cision Ltd.の子会社として、Cisionクラウドベースコミュニケーション製品、世界最大のマルチチャネル、多文化コンテンツ普及ネットワークと包括的なワークフローツールおよびプラットフォームを組み合わせることで、様々な組織のストーリーを支えています。www.prnasia.com

本プレスリリースは発表元が入力した原稿をそのまま掲載しております。また、プレスリリースへのお問い合わせは発表元に直接お願いいたします。

プレスリリース添付画像

このプレスリリースには、報道機関向けの情報があります。

プレス会員登録を行うと、広報担当者の連絡先や、イベント・記者会見の情報など、報道機関だけに公開する情報が閲覧できるようになります。

プレスリリース受信に関するご案内

SNSでも最新のプレスリリース情報をいち早く配信中