New TEM Technique Creates 2.8nm Transistor: WPI-MANA

WPI-MANA

TSUKUBA, Japan, July 26, 2022 /Kyodo JBN/ --

International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS)

An international research team at the International Center for Materials Nanoarchitectonics (WPI-MANA) has used a transmission electron microscope (TEM) to create a 2.8nm transistor consisting of nanochannels embedded in metallic carbon nanotubes (CNTs), which exhibits quantum transport at room temperature.

 

(Image: https://kyodonewsprwire.jp/prwfile/release/M105739/202207043388/_prw_PI1fl_r2SG7I16.jpg)

 

One major aim of nanotechnology research is to control the helical structure of a CNT. This structure determines the nanotube’s properties, and altering it can result in drastic changes, such as turning it from a metal to a semiconductor. To achieve this, the focus has been on growing nanotubes to control the structure, but this has been very difficult due to their extremely small size, only one or two nanometers in diameter.

 

To address this difficulty, researchers at WPI-MANA have developed a technique to precisely manipulate individual CNTs and alter their helical structure inside a TEM.

 

The WPI-MANA team used nanoprobes to apply tension and heat to the CNT. This deformed a section of the nanotube, altering its structure and changing it from a metal into a semiconductor.

 

The section of the altered nanotube was very short, and formed a semiconductor embedded in a metallic nanotube. The researchers believe this can be used as a semiconductor channel, and with the original metallic nanotube as the source and drain, the effect is like a molecular transistor embedded inside the nanotube.

 

Dr. Dai-Ming Tang, leading member of the team, said, "This transistor is extremely small, only 2.8nm in channel length, shorter than any current silicon-based transistors. In fact, this is among the world’s smallest transistors, and we created it by using our new technique."

 

Another exciting aspect of this work relates to the behavior of materials on such tiny scales. "Because we can make such a very small transistor, other effects appear," Dr. Tang said. "For example, we have seen quantum transport at room temperature, which is usually observed only at extremely low temperatures."

 

This could allow the density of transistors on a computer chip to be much higher, leading to more powerful and faster electronics.

 

Research Highlights Vol. 77

https://www.nims.go.jp/mana/research/highlights/vol77.html

 

MANA Research Highlights

https://www.nims.go.jp/mana/research/highlights/

本プレスリリースは発表元が入力した原稿をそのまま掲載しております。また、プレスリリースへのお問い合わせは発表元に直接お願いいたします。

プレスリリース添付画像

| Small | Normal |
| Big | Original |

このプレスリリースには、報道機関向けの情報があります。

プレス会員登録を行うと、広報担当者の連絡先や、イベント・記者会見の情報など、報道機関だけに公開する情報が閲覧できるようになります。

プレスリリース受信に関するご案内

このプレスリリースを配信した企業・団体

  • 名称 国立研究開発法人物質・材料研究機構(NIMS) 国際ナノアーキテクト二クス研究拠点(WPI-MANA)
  • 所在地 茨城県
  • 業種 各種団体
  • URL https://www.nims.go.jp/mana/jp/
  • ※購読している企業の確認や削除はWebプッシュ通知設定画面で行なってください
  • SNSでも最新のプレスリリース情報をいち早く配信中