インクジェット印刷で高速にスピントロニクス素子を作製
~インクジェット印刷技術を用いて、フレキシブルなスピンゼーベック熱電変換素子を実現~
2023年12月18日
国立大学法人東海国立大学機構 岐阜大学
インクジェット印刷で高速にスピントロニクス素子を作製
~インクジェット印刷技術を用いて、フレキシブルなスピンゼーベック熱電変換素子を実現~
ポイント
①容易に曲げられ、曲げても特性を維持するスピンゼーベック熱電変換素子をインクジェット印刷で実現。
②サーモパイル構造を有するスピンゼーベック熱電変換素子がインクジェット印刷で作製可能であることを実証した。
③IoT社会における環境発電素子、センサーの高速生産技術としての利用が期待される。
【概要】
磁性絶縁体に熱を与えることで、熱から電気を取り出すことが可能となる、スピンゼーベック効果 ※1 が次世代の熱電変換素子、熱流センサーとして注目を集めています。スピンゼーベック熱電変換素子 ※2は従来の熱電変換素子と異なり、熱の流れと電流方向が直交するという特徴を持ち、従来素子よりも薄型、フレキシブルに作製できるという利点をもちます。一方で、発電電圧が従来素子に比べ小さいという問題がありました。
九州大学大学院システム情報科学研究院の黒川雄一郎助教、湯浅裕美教授、岐阜大学工学部の山田啓介准教授の研究グループ ※3はインクジェット印刷による新規な手法を用いて素子のパターニングを行い、スピンゼーベック熱電変換素子の発電電圧の増強を実証しました。この手法では、原料となる磁性絶縁体ナノ粒子や導電性金属ナノ粒子をインクとしてインクジェットプリンターに投入することで、画像を印刷するように素子を印刷できます。したがって、高速に素子が作製できるというメリットを有します。さらに、フレキシブルなプラスチックシート上に印刷された素子が十分な柔軟性を有することを確認し、100回程度の曲げ動作を行っても素子の性能にほぼ劣化がないことを実証しました。
IoT※4を効率的に活用する社会を実現するためには、大量の環境発電素子やセンサーを生産することが必須です。このためには、高性能な素子を高速に作製する必要があり、今回提案及び実証したインクジェット印刷法ではそれを実行できる可能性を秘めています。
本研究成果は2023年12月2日(現地時間)、独国の雑誌「Advanced Engineering Materials」にオンライン掲載されました。
プラスチックシート上に印刷されたフレキシブルなスピンゼーベック熱電変換素子
発電電圧が小さいというスピンゼーベック熱電変換素子の課題に対し、インクジェットプリンターを用いてパターニングすることにより、発電電圧の増強に成功しました。本手法はフレキシブルなシートにも有効です。
【研究の背景と経緯】
スピンゼーベック熱電変換素子は、磁性絶縁体中の電子スピンの流れを熱で励起することによって、温度差から電流を取り出すことが可能となる熱電変換素子の一種です。従来の熱電変換素子では温度差と取り出す電流の方向が同じ方向であったことに対し、スピンゼーベック熱電変換素子では、温度差と取り出す電流の方向が互いに直交しているため、従来素子よりも薄型、フレキシブルにすることが可能であるメリットを有します。このようなメリットは、可動部や曲面など、どこにでも設置可能な環境発電素子やセンサーを開発するうえで都合がよく、IoT技術と高いシナジーを有します。一方で、スピンゼーベック熱電変換素子は発電する電圧が小さいという問題がありました。
【研究の内容と成果】
私たちは、スピンゼーベック熱電変換素子を直列に配列することでサーモパイル構造と呼ばれる構造を作製し、発電電圧を増大させる試みを行いました。特に、この構造を作製するための手法として、インクジェットプリンターを用いた印刷法による素子の加工を提案しました。この手法では、まず、スピンゼーベック熱電変換素子の原料となる磁性絶縁体ナノ粒子と、サーモパイル構造を作製するための導電性金属ナノ粒子の分散溶媒をインクとしてインクジェットプリンターに投入します。その後、あらかじめ作製したサーモパイル構造のpdf画像をもとに、フレキシブルなプラスチックシートに印刷を行いました。この手法で、多くの素子を一括かつ高速に作製することに成功しました (図1, 2参照)。また、印刷サーモパイル構造により、発電電圧を従来のおよそ20倍まで増強することに成功しました (図3参照)。さらに、100回程度素子を曲げても発電の特性が変わらないことを実証しました。
【今後の展開】
今回、インクジェットプリンターを用いてスピンゼーベック熱電変換素子を印刷する技術を実証しました。この技術はスピンゼーベック熱電変換素子だけでなく様々な磁性デバイスを作製することに役立つと考えられます。また、IoT社会では、大量のセンサーや環境発電素子を高速に生産する必要があります。本研究で提案したインクジェット印刷による素子作製技術はこの要求を満たすことができ、IoTを活用する社会を実現するために役立つことが期待できます。
【参考図】
図1 スピンゼーベック素子の印刷
導電性金属ナノ粒子、磁性絶縁体ナノ粒子の分散溶媒をインクとしてインクジェットプリンターに投入し、印刷を行います。右図ではプラスチックシートに印刷したスピンゼーベック熱電変換素子を示しており、一連の印刷プロセスで多数の素子が一括で作製できていることが分かります。
図2 印刷後の加工プロセス
熱流から励起された電子スピンの流れを電流に変換するために、印刷後の素子に重金属をスパッタ成膜します。その後、導電性ワイヤ間を絶縁するためにピンセットでケガきます。最終的に右図のようなサーモパイル構造のスピンゼーベック熱電変換素子が完成します。
図3 印刷したスピンゼーベック熱電変換素子の直列素子数に対する発電電圧
直列につないだ素子数を変化させてスピンゼーベック熱電変換素子を印刷し、熱から発電を行った場合の発電電圧を図に示しています。直列につないだ素子の数を増やしていくとおおよそ数に比例して発電電圧が増大し、最大でおよそ20倍まで増強されていることが分かります。
【用語解説】
(※1)スピンゼーベック効果
磁性体に熱流を印加することにより、熱流方向に電子スピンの流れを励起する効果。この効果は磁性金属のみならず磁性絶縁体でも得られる。
(※2)スピンゼーベック熱電変換素子
磁性体の上にスピン軌道相互作用の大きい重金属薄膜を積層すると、熱流で電子スピンを励起したときに重金属層に電子スピンが流れ込む。重金属層のスピン軌道相互作用により電子スピンは電流に変換される。この手法で発電を行うものをスピンゼーベック熱電変換素子と呼ぶ。
(※3) 研究グループ
本論文著者 (全員)
九州大学大学院システム情報科学研究院: 黒川雄一郎(助教)、湯浅裕美(教授)
岐阜大学工学部: 山田啓介(准教授)
(※4) IoT
Internet of Thingsの略であり、様々なモノをインターネットに接続することを意味する。IoTを活用するためには大量のセンサーで環境を測定、インターネット上で共有する必要がある。したがって、小型センシング技術や、その電源として、その場で発電できる環境発電技術が重要な要素である。
【謝辞】
本研究はJST、ACT-X、JPMJAX21K5、 JSPS科研費(JP22H01557、JP22KK0056)、文部科学省次世代 X-nics 半導体創生拠点形成事業 JPJ011438、パロマ環境技術開発財団、荏原畠山記念文化財団、マイクロン財団の助成を受けたものです。
【論文情報】
掲載誌:Advanced Engineering Materials
タイトル:Inkjet Printed Flexible Spin Seebeck Thermopile Device for Low-Cost Spintronics Device Fabrication
著者名:Yuichiro Kurokawa, Keisuke Yamada, Hiromi Yuasa
本プレスリリースは発表元が入力した原稿をそのまま掲載しております。また、プレスリリースへのお問い合わせは発表元に直接お願いいたします。
このプレスリリースには、報道機関向けの情報があります。
プレス会員登録を行うと、広報担当者の連絡先や、イベント・記者会見の情報など、報道機関だけに公開する情報が閲覧できるようになります。
このプレスリリースを配信した企業・団体
- 名称 国立大学法人東海国立大学機構岐阜大学
- 所在地 岐阜県
- 業種 大学
- URL https://www.gifu-u.ac.jp/
過去に配信したプレスリリース
学部新入生を対象とした「発達特性」と「精神的健康度」に関する調査を実施
11/8 14:01
量子センシング技術を活用した生体内における代謝反応の直接計測
10/17 11:20
ALS、アルツハイマー病の早期診断に向けた新たな技術開発
10/9 14:10
糖鎖の生合成を糖鎖自身が制御する仕組みを発見
9/30 10:00
セルロースの基本単位である二糖を使って、光で切断できるマイクロ繊維を開発
9/10 18:00
3種類の金属が並んだ常磁性一次元化合物の合成に成功
8/20 10:00
絶縁体ポリオキソメタレートの半導体化に成功
8/8 14:00
ヒトが超音波を内耳で受容する仕組みを発見
7/30 12:00
ADPやATPを含む生体分子の効率合成法の開発に成功
7/25 17:30
ALT値が示す新たな脂肪性肝疾患リスク
7/22 14:30
肝硬変患者における急性腎障害発症は予後を悪化させる
7/4 18:00