2値分類器の結合による多値分類法の理論的解析に成功
深層学習モデルにおける性能向上に期待
2023年2月2日
学校法人 早稲田大学
国立大学法人 電気通信大学
発表のポイント
●機械学習分野において、2値分類器を組み合わせて多値分類器を構築するError-correcting output coding (ECOC)は実験的に良い性能を示すことが知られていましたが、その理由は理論的に明らかになっていませんでした。
●本研究では2値分類器の推定性能に着目し、その推定誤差に対して頑健なECOCの枠組みを数理的にモデル化することで、分類誤り率を最小とする最大事後確率分類に限りなく近づける方法を理論的に明らかにしました。
●近年脚光を浴びている深層学習モデルに本研究成果を適用することにより、その性能向上に大きく寄与することが期待されています。
早稲田大学データ科学センター講師 雲居 玄道(くもい げんどう)、電気通信大学大学院情報理工学研究科准教授 八木 秀樹(やぎ ひでき)、および早稲田大学データ科学センター教授 小林 学(こばやしまなぶ)、早稲田大学理工学術院創造理工学部教授 後藤 正幸(ごとう まさゆき)、早稲田大学名誉教授 平澤 茂一(ひらさわ しげいち)による共同研究グループは、2値分類器を組み合わせて多値分類器を構築するError-correcting output coding (以下、「ECOC」)の枠組みを数理的にモデル化し、ECOCが良い分類性能を示すための、2値分類器の組み合わせの条件を理論的に明らかにしました。
本研究成果は、シンガポール・World Scientific社発行の『International Journal of Neural Systems, Vol. 33, No. 2 (2023) 』に、論文名 “Performance Evaluation of Error-Correcting Output Coding Based on Noisy and Noiseless Binary Classifiers” として掲載されました。
論文情報
雑誌名:International Journal of Neural Systems
著者名:
八木 秀樹 電気通信大学大学院情報理工学研究科准教授
掲載日時(現地時間):2023年1月9日(月)※オンライン
掲載URL:https://www.worldscientific.com/doi/10.1142/S0129065723500041
本プレスリリースは発表元が入力した原稿をそのまま掲載しております。また、プレスリリースへのお問い合わせは発表元に直接お願いいたします。
このプレスリリースには、報道機関向けの情報があります。
プレス会員登録を行うと、広報担当者の連絡先や、イベント・記者会見の情報など、報道機関だけに公開する情報が閲覧できるようになります。
このプレスリリースを配信した企業・団体
- 名称 早稲田大学
- 所在地 東京都
- 業種 大学
- URL https://www.waseda.jp/top/
過去に配信したプレスリリース
新たな政府統計の分析が明らかにした「裁量労働制」の労働環境への影響
12/19 14:00
レニウム-オスミウム法による火山性塊状硫化物鉱床の生成年代決定
12/19 11:00
宇宙古代都市の建設ラッシュを止めるブラックホール
12/18 11:00
新技術でCFRPから炭素繊維を加熱・薬剤レス、エネルギー効率10倍で回収
12/16 11:05
早稲田大学の研究者が学問の魅力を語るPodcast番組 ”博士一歩前” 新シリーズ配信開始
12/12 14:00
ヒトの温熱感覚に関わる脳部位と活動パターンを発見
12/12 11:00
世界デジタル政府ランキング2024年版公開
12/4 11:00
銅酸化物高温超伝導体Bi2212の紫外・可視光領域における大きな光学的異方性の起源を解明
11/20 11:00
小さな刺激が選択の悩みを解消
11/18 11:00