2値分類器の結合による多値分類法の理論的解析に成功
深層学習モデルにおける性能向上に期待
2023年2月2日
学校法人 早稲田大学
国立大学法人 電気通信大学
発表のポイント
●機械学習分野において、2値分類器を組み合わせて多値分類器を構築するError-correcting output coding (ECOC)は実験的に良い性能を示すことが知られていましたが、その理由は理論的に明らかになっていませんでした。
●本研究では2値分類器の推定性能に着目し、その推定誤差に対して頑健なECOCの枠組みを数理的にモデル化することで、分類誤り率を最小とする最大事後確率分類に限りなく近づける方法を理論的に明らかにしました。
●近年脚光を浴びている深層学習モデルに本研究成果を適用することにより、その性能向上に大きく寄与することが期待されています。
早稲田大学データ科学センター講師 雲居 玄道(くもい げんどう)、電気通信大学大学院情報理工学研究科准教授 八木 秀樹(やぎ ひでき)、および早稲田大学データ科学センター教授 小林 学(こばやしまなぶ)、早稲田大学理工学術院創造理工学部教授 後藤 正幸(ごとう まさゆき)、早稲田大学名誉教授 平澤 茂一(ひらさわ しげいち)による共同研究グループは、2値分類器を組み合わせて多値分類器を構築するError-correcting output coding (以下、「ECOC」)の枠組みを数理的にモデル化し、ECOCが良い分類性能を示すための、2値分類器の組み合わせの条件を理論的に明らかにしました。
本研究成果は、シンガポール・World Scientific社発行の『International Journal of Neural Systems, Vol. 33, No. 2 (2023) 』に、論文名 “Performance Evaluation of Error-Correcting Output Coding Based on Noisy and Noiseless Binary Classifiers” として掲載されました。
論文情報
雑誌名:International Journal of Neural Systems
著者名:
八木 秀樹 電気通信大学大学院情報理工学研究科准教授
掲載日時(現地時間):2023年1月9日(月)※オンライン
掲載URL:https://www.worldscientific.com/doi/10.1142/S0129065723500041
本プレスリリースは発表元が入力した原稿をそのまま掲載しております。また、プレスリリースへのお問い合わせは発表元に直接お願いいたします。
このプレスリリースには、報道機関向けの情報があります。
プレス会員登録を行うと、広報担当者の連絡先や、イベント・記者会見の情報など、報道機関だけに公開する情報が閲覧できるようになります。
このプレスリリースを配信した企業・団体
- 名称 早稲田大学
- 所在地 東京都
- 業種 大学
- URL https://www.waseda.jp/top/
過去に配信したプレスリリース
石橋湛山記念 早稲田ジャーナリズム大賞 候補作品の募集について(4/15受付開始)
3/31 11:00
テラヘルツ波で耳の病気を見える化
3/28 10:00
日本人の「デモ嫌い」が生むプロパガンダへの脆弱性を解明
3/27 10:00
日本人は権威主義国家のナラティブに広く説得されることが明らかに
3/17 11:00
糖尿病根治に扉を拓くタンパク質の発見
3/14 11:30
定型表現が英語ペラペラの鍵
3/14 11:00
なぜ参議院の方が衆議院よりも女性議員比率が高いのか
3/13 14:00
「放射化イメージング」でマウス体内の金ナノ粒子を可視化
3/13 09:30
脂肪肝炎発症メカニズムの一端を発見
3/12 11:00
地球規模の急激な寒冷化が酵素の進化を促進
3/10 14:00
早稲田大学と理化学研究所との連携・協力に関する基本協定締結について
3/10 11:00